
Issues and Comments about Object Oriented Technology in Aviation 

Issue 
# 

Topic Issue Statement 

1 Dead/ deactivated 
code 

Deactivated Code will be found in any application that uses 
general purposed libraries or object-oriented frameworks.  (Note 
that this is the case where unused code is NOT removed by smart 
linkers.) 

2 Dynamic binding/ 
dispatch 

Flow Analysis, recommended for Levels A-C, is complicated by 
Dynamic Dispatch (just which method in the inheritance 
hierarchy is going to be called?). 

3 Dynamic binding/ 
dispatch 

Timing Analysis, recommended for Levels A-D is complicated 
by Dynamic Dispatch (just how much time will be expended 
determining which method to call?).  

4 Dynamic binding/ 
dispatch 

Requirements Testing, recommended for Levels A-D, and 
Structural Coverage Analysis, recommended for Levels A-C, are 
complicated by Inheritance, Overriding and Dynamic Dispatch 
(just how much of the existing verification of the parent class can 
be reused in its subclasses?).  

5 Dynamic binding/ 
dispatch 

Structural Coverage Analysis, recommended for Levels A-C, is 
complicated by Dynamic Dispatch (just which method in the 
inheritance hierarchy does the execution apply to?).   

6 Dynamic binding/ 
dispatch 

Conformance to the guidelines in DO-178B concerning 
traceability from source code to object code for Level A software 
is complicated by Dynamic Dispatch (how is a dynamically 
dispatched call represented in the object code?).  

7 Dynamic binding/ 
dispatch 

Polymorphic, dynamically bound messages can result in code that 
is error prone and hard to understand.  

8 Dynamic binding/ 
dispatch 

Dynamic dispatch presents a problem with regard to the 
traceability of source code to object code that requires “additional 
verification” for level A systems as dictated by DO-178B section 
6.4.4.2b. 

9 Dynamic binding/ 
dispatch 

Dynamic dispatch complicates flow analysis, symbolic analysis, 
and structural coverage analysis. 

10 Dynamic binding/ 
dispatch 

Inheritance, polymorphism, and linkage can lead to ambiguity. 



11 Dynamic binding/ 
dispatch 

The use of inheritance and polymorphism may cause difficulties 
in obtaining structural coverage, particularly decision coverage 
and MC/DC 

12 Dynamic binding/ 
dispatch 

Source to object code correspondence will vary between 
compilers for inheritance and polymorphism. 

13 Dynamic binding/ 
dispatch 

Polymorphic and overloaded functions may make tracing and 
verifying the code difficult. 

14 Inheritance Requirements Testing, recommended for Levels A-D, and 
Structural Coverage Analysis, recommended for Levels A-C, are 
complicated by Inheritance, Overriding and Dynamic Dispatch 
(just how much of the existing verification of the parent class can 
be reused in its subclasses?).  

15 Inheritance Multiple interface inheritance can introduce cases in which the 
developer’s intent is ambiguous. (when the same definition is 
inherited from more than one source is it intended to represent the 
same operation or a different one?)   

16 Inheritance Flow Analysis and Structural Coverage Analysis, recommended 
for Levels A-C, are complicated by Multiple Implementation 
Inheritance (just which of the inherited implementations of a 
method is going to be called and which of the inherited 
implementations of an attribute is going to be referenced?).  The 
situation is complicated by the fact that inherited elements may 
reference one another and interact in subtle ways which directly 
affect the behavior of the resulting system.  

17 Inheritance Use of inheritance (either single or multiple) raises issues of 
compatibility between classes and subclasses. 

18 Inheritance Inheritance and overriding raise a number of issues with respect 
to testing: “Should you retest inherited methods? Can you reuse 
superclass tests for inherited and overridden methods? To what 
extent should you exercise interaction among methods of all 
superclasses and of the subclass under test?” 

19 Inheritance Inheritance can introduce problems related to initialization. “Deep 
class hierarchies [in particular] can lead to initialization bugs.”  
There is also a risk that a subclass method will be called (via 
dynamic dispatch) by a higher level constructor before the 
attributes associated with the subclass have been initialized. 



20 Inheritance “A subclass-specific implementation of a superclass method is 
[accidentally] omitted.  As a result, that superclass method might 
be incorrectly bound to a subclass object, and a state could result 
that was valid for the superclass but invalid for the subclass 
owing to a stronger subclass invariant. For example, Object-level 
methods like isEqual or copy are not overridden with a necessary 
subclass implementation”. 

21 Inheritance “A subclass [may be] incorrectly located in a hierarchy. For 
example, a developer locates SquareWindow as a subclass of 
RectangularWindow, reasoning that a square is a special case of a 
rectangle ... Suppose that [the method] resize(x, y) is inherited by 
SquareWindow. It allows different lengths for adjacent sides, 
which causes SquareWindow to fail after it has been resized. This 
situation is a design problem: a square is not a kind of a rectangle, 
or vice versa. Instead both are kinds of four-sided polygons. The 
corresponding design solution is a superclass FourSidedWindow, 
of which RectangularWindow and SquareWindow are 
subclasses.”  

22 Inheritance “A subclass either does not accept all messages that the 
superclass accepts or leaves the object in a state that is illegal in 
the superclass. This situation can occur in a hierarchy that should 
implement a subtype relationship that conforms to the Liskov 
substitution principle.”  

23 Inheritance “A subclass computes values that are not consistent with the 
superclass invariant or superclass state invariants.”  

24 Inheritance “Top-heavy multiple inheritance and very deep hierarchies (six or 
more subclasses) are error-prone, even when they conform to 
good design practice. The wrong variable type, variable, or 
method may be inherited, for example, due to confusion about a 
multiple inheritance structure”  

25 Inheritance The ability of a subclass to directly reference inherited attributes 
tightly couples the definitions of the two classes. 

26 Inheritance Inheritance can be abused by using it as a “kind of code-sharing 
macro to support hacks without regard to the resulting semantics” 

27 Inheritance When the same operation is inherited by an interface via more 
than one path through the interface hierarchy (repeated 



inheritance), it may be unclear whether this should result in a 
single operation in the subinterface, or in multiple operations. 

28 Inheritance When a subinterface inherits different definitions of the same 
operation [as a result of redefinition along separate paths], it may 
be unclear whether/how they should be combined in the resulting 
subinterface. 

29 Inheritance Use of multiple inheritance can lead to “name clashes” when 
more than one parent independently defines an operation with the 
same signature. 

30 Inheritance When different parent interfaces define operations with different 
names but compatible specifications, it is unclear whether it 
should be possible to merge them in a subinterface. 

31 Inheritance It is unclear whether the normal overload resolution rules should 
apply between operations inherited from different superinterfaces 
or whether they should not (as in C++). 

32 Inheritance It is important that the overriding of one operation by another and 
the joining of operations inherited from different sources always 
be intentional rather than accidental. 

33 Inheritance Multiple inheritance complicates the class hierarchy  
34 Inheritance Multiple inheritance complicates configuration control  
35 Inheritance When inheritance is used in the design, special care must be taken 

to maintain traceability. This is particularly a concern if multiple 
inheritance is used. 

36 Inheritance Source to object code correspondence will vary between 
compilers for inheritance and polymorphism. 

37 Inheritance Overuse of inheritance, particularly multiple inheritance, can lead 
to unintended connections among classes, which could lead to 
difficulty in meeting the DO-178B/ED-12B objective of data and 
control coupling. 

38 Inheritance Multiple inheritance should be avoided in safety critical, certified 
systems. 

39 Inheritance “Top-heavy multiple inheritance and very deep hierarchies (six or 
more subclasses) are error-prone, even when they conform to 
good design practice. The wrong variable type, variable, or 
method may be inherited, for example, due to confusion about a 
multiple inheritance structure”  



40 Inheritance Reliance on programmer specified optimizations of the 
inheritance hierarchy (invasive inheritance) is potentially error 
prone and unsuitable for safety critical applications. 

41 Inheritance Inheritance, polymorphism, and linkage can lead to ambiguity. 
42 Inheritance Inheritance allows different objects to be treated in the same 

general way. 
Inheritance as used in Object Oriented Technology is combining 
several like things into a fundamental building block.  The 
programmer is allowed to take a group of these like things and 
refer to them in a general way. One routine can be used for all 
types that inherit from the fundamental building block.  The more 
often a programmer can use the generic behavior of the parent, 
the more productive the programmer is.  The problem I see is that 
the generic behavior will not always be precise enough for all the 
applications, and that critical judgement is required to determine 
when the programmer needs to specialize the behavior of one of 
the object rather than use the generic.  Who will issue that critical 
judgement?  Who will find all the instances where the general 
case is too far away from the precision required? 

43 Inlining Flow Analysis, recommended for levels A-C, is impacted by 
Inlining (just what are the data coupling and control coupling 
relationships in the executable code?). The data coupling and 
control coupling relationships can transfer from the inlined 
component to the inlining component. 

44 Inlining Stack Usage and Timing Analysis, recommended for levels A-D, 
are impacted by Inlining (just what are the stack usage and worst-
case timing relationships in the executable code?).  Since inline 
expansion can eliminate parameter passing, this can effect the 
amount of information pushed on the stack as well as the total 
amount of code generated.  This, in turn, can effect the stack 
usage and the timing analysis.  

45 Inlining Structural Coverage Analysis, recommended for levels A-C, is 
complicated by Inlining (just what is the “logical” coverage of the 
inline expansions on the original source code?).  This is generally 
only a problem when inlined code is optimized.  If statements are 
removed from the inlined version of a component, then coverage 



of the inlined component is no longer sufficient to assert coverage 
of the original source code. 

46 Inlining Conformance to the guidelines in DO-178B concerning 
traceability from source code to object code for Level A software 
is complicated by Inlining (is the object code traceable to the 
source code at all points of inlining/expansion?). Inline expansion 
may not be handled identically at different points of expansion. 
This can be especially true when inlined code is optimized. 

47 Inlining Inlining may affect tool usage and make structural coverage more 
difficult for levels A, B, and C.  

48 Structural coverage The unrestricted use of certain object-oriented features may 
impact our ability to meet the structural coverage criteria of DO-
178B. 

49 Structural coverage Statement coverage when polymorphism, encapsulation or 
inheritance is used. 

50 Templates Templates are instantiated by substituting a specific type 
argument for each formal type parameter defined in the template 
class or operation. Passing a test suit for some but not all 
instantiations cannot guarantee that an untested instantiation is 
bug free. 

51 Templates Nested templates, child packages (Ada), and friend classes (C++) 
can result in complex code and hard to read error messages on 
many compilers. 

52 Templates Templates can be compiled using "code sharing" or "macro-
expansion". Code sharing is highly parametric, with small 
changes in actual parameters resulting in dramatic differences in 
performance. Code coverage, therefore, is difficult and mappings 
from a generic unit to object code can be complex when the 
compiler uses the "code sharing" approach. 

53 Templates Macro-expansion can result in memory and timing issues, similar 
to those identified for inlining. 

54 Templates The use of templates can result in code bloat. Many C++ 
compilers cause object code to be repeated for each instance of a 
template of the same type. 

55 Tools How can we meet the structural coverage requirements of DO-
178B with respect to dynamic dispatch?  There is cause for 



concern because many current Structural Coverage Analysis tools 
do not “understand” dynamic dispatch, i.e. do not treat it as 
equivalent to a call to a dispatch routine containing a case 
statement that selects between alternative methods based on the 
run-time type of the object. 

56 Tools How can we meet the control and data flow analysis requirements 
of DO-178B with respect to dynamic dispatch? 

57 Tools How can deactivated code be removed from an application when 
general purpose libraries and object-oriented frameworks are used 
but not all of the methods and attributes of the classes are needed 
by a particular application? 

58 Tools How can we enforce the rules that restrict the use of specific OO 
features? 

59 Other Implicit type conversion raises certification issues related to 
source to object code traceability, the potential loss of data or 
precision, and the ability to perform various forms of analysis 
called for by [DO-178B] including structural coverage analysis 
and data and control flow analysis.   It may also introduce 
significant hidden overheads that affect the performance and 
timing of the application. 

60 Other Overloading can be confusing and contribute to human error 
when it introduces methods that have the same name but different 
semantics.  Overloading can also complicate matters for tools 
(e.g., structural coverage and control flow analysis tools) if the 
overloading rules for the language are overly complex. 

61 Other Loss of traceability due to the translation of functional 
requirements to an object-oriented design. 

62 Other Functional coverage of the low level requirement 
63 Other Philosophy of Functional Software Engineering - Most of the 

training, tools and principles associated with software engineering 
and assurance, including those of RTCA DO-178B, have been 
focused on a software function perspective, in that there is an 
emphasis on software requirements and design and verification of 
those requirements and the resulting design using reviews, 
analyses, and requirements-based (functional) testing, and RBT 
coverage and structural coverage analysis. 



Philosophy of Objects and Operations - Although generally 
loosely and inconsistently defined, OOT focuses on "objects" and 
the "operations" performed by and/or to those objects, and may 
have a philosophy and perspective that are not very conducive to 
providing equivalent levels of design assurance as the current 
"functional" approach.  

64 Other Software/software integration testing is often avoided. The 
position defended by the industry is that the high level of 
interaction between a great number of objects could lead to a 
combinative explosion of test cases. 

65 Other Could there be security concerns related to the use of COTS 
based OOT solutions?  Particularly with respect to field loadable 
software, security risks have been mitigated by the unique 
architectures of most current systems. 

66 Other Use of dynamic memory allocation/deallocation and use of 
exception handling were raised as issues by Leanna Rierson in 
her paper "Object-Oriented Technology (OOT) in Civil Aviation 
Projects: Certification Concerns" but are currently missing from 
the list of concerns.  If the FAA is concerned about these two 
items, they should be discussed at the workshop. 

67 Other Most OO languages use reference semantics for passing objects 
(e.g. Java only supports reference semantics; C++ also supports 
passing by value but this is rarely used and cannot be used when 
dynamic binding is required). This results in variables being 
aliased to each other. It is difficult to analyse the effect of this 
aliasing on program behaviour because many tools do not allow 
for the possible presence of aliasing. it is also easy for a 
developer to inadvertantly use a shallow copy or equality 
operation where the required semantics can only be achieved by a 
deep copy or equality operation. 

68 Dynamic 
binding/dispatch 

The selection of the code to implement an operation may depend 
upon more than just the run time type of the target object.  In 
cases involving binary mathematical operations, for instance,  
this choice typically depends on the run time types of both 
arguments.  As explained in [Bruce et al.], [Castagna] and 
[MultiJava], this (and other related situations) are not handled 



well by most current OO languages.  (A.k.a. "Binary methods 
problem") 
References: 
[Bruce eta al.] Bruce, Kim, Luca Cardelli, Giuseppe Castagna, 
The Hopkins Object Group, Gary T. Leavens and Benjamin 
Pierce. On Binary Methods, Iowa State University, technical  
report #95-08a, December 1995. 
 
[Castagna] Castagna, Giuseppe.  Object-Oriented Programming: 
A Unified Foundation, Birkauser, Boston, ISBN: 0-8176-3905-5, 
1997. 
 
[MultiJava] Clifton, Curtis, Gary T. Leavens, Craig Chambers, 
and Todd Millstein.  "MultiJava: Modular Open Classes and 
Symmetric Multiple Dispatch for Java", OOPSLA 2000 
Conference Proceedings: ACM SIGPLAN Notices, vol. 35, no. 
10, October 2000, pp. 130-145. 
 

69 Control flow in OO 
designs/programs 

The use of OO methods typically  leads to the creation of many 
small methods which are physically distributed over a large 
number of classes.  This, and the use of dynamic dispatch, can 
make it difficult for developers to trace critical paths through the 
application during design and coding reviews.  
JUSTIFICATION:  It is important to be able to specify and 
review the behavior of the system with respect to scenarios that 
affect system safety.  
PROPOSED SOLUTION: This issue can be addressed  
as follows::  
1) At a modeling level, we can use UML sequence diagrams to 
specify safety critical scenarios during analysis, and refine these 
during design (by presenting the steps in the scenario at a greater 
level of detail). Code can then be generated from the overall 
UML model and reviewed to ensure it complies with the design 
level sequence diagram (assuming the tool responsible for code 
generation is not qualified). The analysis and design level 
scenarios can be developed as a part of a system level safety 



assessment, e.g. as system level scenarios that could lead to 
hazards.  
2) At a source code level, we can use aspects to physically group 
the methods called in such scenarios, so that they appear in a 
single file.  
Note: Although the methods definitions are physically grouped in 
this way in order to create the source code equivalent of an 
analysis or design scenario, they are still associated with different 
classes in accordance with the OO principles of encapsulation and 
data abstraction.  
3) Both 1 and 2, with the generation of aspects from UML 
models.  
RELATED TOPICS: Dynamic dispatch, traceability (of analysis 
to design to code)  

70 Traceability The difference between dead and deactivated code is not always 
clear when using OOT.  Without good traceability, identifying 
dead vs. deactivated code may be difficult or impossible. 

71 Traceability When a design contains abstract base classes, portions of the 
implementations of these classes may be overridden in more 
specialized subclasses, resulting deactivated code. 

72 Traceability Traceability is made more difficult because there is often a lack 
of OO methods or tools for the full software lifecycle.  

73 Other Formal specification languages are generally accessible only to 
those specially trained to use them. To make formal specifications 
accessible to developers and the authors of test cases, we must 
map such formal specifications to natural language and/or other 
less formal notations (e.g. UML). There, however, is currently no 
well defined means of doing so. This issue applies to both 
preliminary and detailed design.   

74 Other Change impact analysis may be difficult or impossible due to 
difficulty in tracing functional requirements through 
implementation. 

75 Other Limitations of UML may limit how non-functional and cross-
cutting requirements of realtime, safety critical, distributed, fault-
tolerant, embedded systems are captured in UML and traced to 
the design, implementation, and test cases. 



76 Other Configuration management may be difficult in OO systems, 
causing traceability problems.  If the objects and classes are 
considered configuration items, they can be difficult to trace, 
when used multiple times in slightly different manners. 

77 Traceability What is “low level requirements” for OO? Affects how we do 
low-level testing.  If we don’t know what low-level requirements 
are, we don’t know the appropriate level of testing. 
* High level = WHAT 
* Low level = HOW 
 
Related to issue raised in tools session – relation be between 
artifacts. 
 
Should be addressed in the handbook. 
 

78 Traceability Addressing derived requirements for OO – how does this happen?  
How is it different than traditional and how does it tie up to the 
safety assessment.Not really unique for OO. 
 
Will be addressed when we do the artifact mapping.  
 

79 Traceability Difficult to identify individual atomic requirements in OO.  UML 
tends to group requirements in a graphical format.  Would 
complicate matters if considered derived. 
For derived requirements, the entire graph would be passed to the 
safety folk for evaluation of safety impact. 

80 Traceability Lower levels of decomposition may not be possible for some 
requirements (e.g., performance requirements). Levels of 
abstraction may be different than traditional. 

81 Traceability Are there unique challenges for source to object code traceability 
in non-Level A systems?  Where should this be addressed?  
Multiple tools and ways of addressing s-to-o traceability? (not 
really new) 
Beyond what DO-178B requires.  More of a “DO-178C” issue.  
Out of scope for the handbook.  Is UML the “source code” for 
OO? 



82 Traceability Is there another “class” of tool qualification for visual modeling 
tools to demonstrate the integrity of these tools?  Not necessarily 
automating a step, but are looking to make sure the tool is doing 
what you want.  How to ensure consistency of the tools 
(validating the tool)?  How to validate the tool when changes 
occur? 
Typically part of the tool selection process.  Concern seems to be 
addressed by handbook mod. 

83 Traceability Auto-test and code generation tools – what are the concerns when 
a single tool generates code and test from the same model?  The 
concern is with the independence – same input and same tool. 
Already covered by DO-178B.  Not necessarily OO-specific, but 
may be more prevalent with OO tools.  Need to be addressed in 
some other document or forum. 

84 Traceability Maintaining tool environment, archives, … when licenses are 
involved is not clear.  May need to have some kind of “permanent 
license” to support safety and continued airworthiness of the 
aircraft. 
OO more dependent on tools, but not necessarily an OO-specific 
issue. 

85 Traceability Maturity/long-term support of tools.  Tool manufacturers may not 
realize the long-life need of tools.  Is this a higher risk in the OO 
environment?  Education for both the tool and aviation 
communities to understand the specific needs for tool 
manufacturers and aircraft manufacturers. 
Not necessarily OO-specific, but might be more prevalent with 
OO. 

86 Traceability Are there other types of OO tools that need to be addressed?  
Need to anticipate other classes of tools that may come onto the 
scene.  E.g., traceability tool for OO, transformation tools, CM 
tools, refactoring tools (tool to restructure source code to meet 
new requirements),  

87 Traceability How does OO life cycle data map to the DO-178B section 11 life 
cycle data?  E.g., What “source code” mean in OO?  What is req, 
design, code?  Transition from text-based to model-based 
artifacts. 



*** May need to clarify this up front in the handbook, when 
making the tie between DO-178B and the handbook. 

88 Traceability Configuration management and incremental development of OO 
projects and tools.  When CM comes into play during the 
development process may be different than our current practices, 
when using an UML tool.  Doing more iterations in OO.  How to 
“get credit” on iterations. Not necessarily OO-specific, but might 
be more prevalent with OO because of the multiple iterations. 

89 Traceability Is dynamic dispatch compatible with DO-178B required forms of 
static analysis?  
Mention that dynamic dispatch hinders some forms of static 
analysis including (see DO-178B section 6.3.4f). Tools can treat 
this if complete closure exists. DO-178B requires complete 
closure. 
In cases of incomplete closure, need to define ways to implement. 

90 Traceability Fundamental pre-requisite language issues need clarification prior 
to adopting LSP and DBC. How can LSP be implemented using 
available languages? 
Strongly consider a language subset that is amenable to use of 
LSP and DBC. Concern is how far to take this subset. 

91 Dynamic binding/ 
dispatch 

Inconsistent Type Use (ITU):  
When a descendant class does not override any inherited method 
(i.e., no polymorphic behavior), anomalous behavior can occur if 
the descendant class has extension methods resulting in an 
inconsistent inherited state.  

92 Dynamic binding/ 
dispatch 

State Definition Anomaly (SDA):  
If refining methods do not provide definitions for inherited state 
variables that are consistent with definitions in an overridden 
method, a data flow anomaly can occur.  

93 Dynamic binding/ 
dispatch 

State Definition Inconsistency (SDIH): 
If an indiscriminately-named local state variable is introduced, a 
data flow anomaly can result.  

94 Dynamic binding/ 
dispatch 

State Defined Incorrectly (SDI): 
If a computation performed by an overriding method is not 
semantically equivalent to the computation of the overridden 
method wrt a variable, a behavior anomaly can result. 



95 Dynamic binding/ 
dispatch 

Indirect Inconsistent State Definition (IISD): 
When a descendent adds an extension method that defines an 
inherited state variable, an inconsistent state definition can occur.  

96 Dynamic binding/ 
dispatch 

Anomalous construction behavior (ACB1): 
If a descendant class provides an overriding definition of a 
method which uses variables defined in the descendant’s state 
space, a data flow anomaly can occur.  

97 Dynamic binding/ 
dispatch 

Anomalous construction behavior (ACB2): 
If a descendant class provides an overriding definition of a 
method which uses variables defined in the ancestor’s state space, 
a data flow anomaly can occur.   

98 Dynamic binding/ 
dispatch 

Incomplete construction (IC): 
If the constructor does not establish initial state conditions and the 
state invariants for new instances of a class, then a state variable 
may have in incorrect initial value or a state variable may not 
have been initialized.  

99 Dynamic binding/ 
dispatch 

State Visibility Anomaly (SVA): 
When private state variables exist, if every overriding method in a 
descendant class doesn’t call the overridden method in the 
ancestor class, a data flow anomaly can exist.  

 
 


